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Abstract—The multiscale finite element method (MsFEM) 

combined with conventional finite element method (CFEM) is 

proposed to solve static magnetic field in the ribbon magnetic core 

with non-periodical corners considered. Firstly, a simple 

2-dimensional electrostatic problem is used to introduce the 

MsFEM implementation process. The results are compared to 

analytical method, as well as conventional FEM. Then, an exam-

ple of magneto-static problem is considered for a ribbon magnetic 

core built sheet by sheet as well as corners taken into considera-

tion. Conventional FEM and MsFEM are used to compute the 

magneto-static field by adopting scalar magnetic potential. Both 

magnetic potential and magnetic flux density on a certain path are 

compared. It is shown that the results obtained by MsFEM agree 

well with the one from conventional FEM. Moreover, MsFEM 

combined with FEM is potentially a general strategy for mul-

tiscale modeling of ribbon magnetic cores with complex and 

non-periodical structures considered, like corners and T-joints, 

which can effectively reduce the computational cost. 

 
Index Terms—Magneto-static, multiscale finite element, mul-

tiscale modeling, ribbon magnetic core. 

 

I. INTRODUCTION 

HE discretization of ribbon magnetic cores and laminated 

iron cores, i.e. by FEM, would lead to a prohibitively large 

system of equations since ribbon magnetic core and laminated 

iron core can be viewed as highly heterogeneous models. In 

three-dimensional (3-D) case, the issue of computational cost 

becomes even more severe. It is a huge difficulty for the mod-

ern computer to solve. Surely, it is far away from being a rou-

tine task for engineers in the design and performance analysis 

of electrical devices with such structure. To overcome this 

unpleasant fact, homogenization methods (HM) have been 

applied. In 2003, Dular et al adopted FEM combined with HM 

to study a three-dimensional 3-D magnetic field computation  

where the eddy currents in laminated stacks were taken into 

account [1]. In [2], [3], Gyselinck et al presented a novel 

time-domain HM for laminated iron cores in 3-D FE models for  
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linear and nonlinear problems, respectively. In [4], Niyonzima 

et al adopted heterogeneous multiscale method to study lami-

nated cores, which still needed homogenized material proper-

ties on representative volume elements (RVEs). Average 

quantities can be obtained by these computational HM methods. 

More often, it is desirable to capture the fine-scale effects, like 

the eddy current and magnetic distribution in each sheet of the 

ribbon magnetic core and iron core for loss calculation. In order 

to achieve this objective, researchers proposed some solutions. 

Duan et al proposed an improved extended finite element 

method (XFEM) for modeling electromagnetic devices with 

multiple nearby geometrical interfaces and discontinuities in 

electric fields [5]. Meanwhile, a ‘multiscale finite element 

method’ for the 2-D and 3-dimensional eddy current problem in 

iron laminates was put forwarded in [6], [7]. The mesh used for 

these two approaches are independent of geometries, and 

‘correction functions’ (CFs) or ‘special functions’(SFs) are 

needed for basis functions construction of coarse elements first. 

For complex structures, like corners and T-joints of the trans-

formers, it is difficult to find these CFs or SFs. It needs to find 

these CFs or SFs for each coarse element when non-periodical 

structures are of interest. 

In this paper, we aimed to capture the magnetic distribution 

in small-scale of ribbon magnetic cores using another MsFEM 

which is firstly proposed by Hou and Wu for the elliptic prob-

lems in composite materials and porous media [8]. It has been 

used for fluid flow [9], groundwater flow [10], and mechanical 

analysis of heterogeneous materials [11]. This MsFEM was 

first introduced by Bottauscio and Manzin to solve eddy current 

problem, but with granular magnetic materials [12]. Compared 

with other multiscale modeling methods, MsFEM proposed by 

Hou and Wu do not use explicit expressions for basis functions 

construction. The basis functions are a set of numerical values 

on fine grids of each coarse element, which means that it can 

cope with basis functions construction of arbitrary geometries 

easily, such as T-joints and corners of an iron core. Hence, it is 

a general way to construct basis functions for elements with 

complex structures. In addition, results on small scale resolved 

by MsFEM can be as good as those solved by the CFEM. In this 

work, we developed this approach to model a magneto-static 

problem with application to magnetic core of a high-frequency 

transformer, and the magnetic distribution and flux density in 

each ribbon will be investigated. The organization of the paper 

is as follows: Firstly, a brief introduction to MsFEM and a 

simple case using the analytical method, FEM, and MsFEM are 
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examined. Then, application to magneto-static problem of 

MsFEM combined with FEM is considered in section III. The 

conclusion is given in section IV. 

II. MATHEMATICAL MODEL 

A. A brief introduction to MsFEM 

The main idea of MsFEM is to construct multiscale basis 

functions, which capture fine-scale information within each 

coarse grid. The fine-scale information is then brought to 

coarse-scale through the coupling of global stiffness matrix. 

Thus, effects of fine-scale on the coarse-scale can be captured. 

Similar to XFEM, for our MsFEM, the mesh is independent of 

geometries, and a coarse grid may include several materials.  

In general, there are three major steps for the implementation 

of MsFEM: multiscale basis function construction, global 

formulation, and downscaling analysis. To demonstrate the 

performance and implementation process of the MsFEM, a 

simple 2-D electrostatic problem is considered. The results 

obtained by MsFEM are compared with the analytical method, 

as well as the conventional FEM.  

The governing equation and boundary conditions for the 

electrostatic problem are as follows: 
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The simulation model is depicted in Fig.1. It consists of 3 

coarse grids and 8 coarse-grid nodal points. Element ①, ③ 

contain only one material, while coarse element ②, included by 

the dashed line, contains two kinds of materials. Material 

property in light orange color is ε1=1, while in the yellow region 

ε2=5. Multiscale basis function construction in coarse grid ② 

will be detailed as follows. 
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Fig.1.  Coarse grids of the MsFEM. 

1. Multiscale basis function construction 

Multiscale basis functions satisfy the following local 

boundary problems, 
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Here, E is coarse grid ②. Multiscale basis functions can be 

obtained by solving the local boundary problems with specified 

boundary conditions. To be noticed, the boundary conditions 

for basis constructions are vital. Here, the oscillation boundary 

condition is used. 

Firstly, coarse grid ② is refined into 3 finer grids, a, b, c, as 

shown in the upper part of Fig.1. Then, oscillation boundary 

conditions are used for multiscale basis function construction 

of coarse-grid nodes, namely 3, 5, 6, 4. For a general coarse 

grid E, oscillation boundary conditions for coarse-grid node i 

(i=3, 4, 5, 6) are shown in Fig.2. Here, "the boundary condition" 

value is something has the form like "u=g", and g can be 

piecewise functions or g=0 on Γij (i, j=3, 4, 5, 6). 

The boundary condition for the multiscale basis of coarse 

grid E on Γim is E

ig  and the function E

ig  is given by [7],  
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where ( )K x  is function of material property on the boundary. 

With (4), the boundary condition on Γ35 for node i=3 of ② is, 
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② . 

where m1-m8 are fine-grid nodal points. Boundary conditions 

are equal to the multiscale basis values in this case because 

there are no inside-nodes of coarse grid ②. Boundary condi-

tions on other coarse-grid nodes are obtained similarly.   
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Fig.2.  Oscillation boundary condition for coarse grid E. 

2. Global formulation 

Element in stiffness matrix KE of coarse grid E is given, 
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where E the index of coarse grid, here E is only for ② for our 

case; i, j the index of the node in the coarse grid E, here as E is 

the ② coarse grid, i, j = 3, 4, 5, 6;  Nelement,E the number of refine 

grids in the coarse grid E, i.e here Nelement,E =3, namely for three 

grids: a, b and c; NE
node,e the number of node in the e-th refine 

element in the coarse grid E, i.e. 4 nodes for coarse grid ② here; 

εe in the refine element e; Nk, Nl the standard bilinear basis 

function of the conventional FEM associated to k-th or l-th 
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node in the refined mesh; I(e, k) represents the index of k-th 

node of the e-th refined mesh in the coarse grid E. For example, 

when e=1, we consider the a refined grid, the four nodes are m1, 

m3, m4 and m2. 

With (5), the stiffness matrix of coarse grid ② is, 

                      3           4             5            6

3 4.5617 4.0062 0.6883 1.2438

4 4.0062 4.5617 1.2438 0.6883

5 0.6883 1.2438 4.5617 4.0062

6 1.2438 0.6883 4.0062 4.5617

  
  
 
  
 
  

②
K

 

where the number 3-6, on the top and the left side is the index of 

coarse-grid node. 

Meanwhile, the stiffness matrices of coarse grid ①, ③ can 

be obtained by the conventional FEM.  

3. Downscaling analysis 

The solution on fine grids can be obtained by a linear com-

bination of the multiscale basis function, as shown below. 

 
E E E E

i i j j k k m mu u u u u         (6) 

Results calculated by analytical method, FEM and MsFEM 

are summarized in Table I. From this table, it is obvious that the 

result solved by MsFEM agrees well with analytical method 

and FEM. Validation of MsFEM can be proved. 
TABLE I 

RESULT COMPARISON OF ANALYTICAL METHOD, FEM, MSFEM 

Coordinate Analytical FEM MsFEM 

(0.2,0) 0.3448 0.3448 0.3448 

(0.2,0.2) 0.3448 0.3448 0.3448 

(0.4,0) 0.4138 0.4138 0.4138 

(0.4,0.2) 0.4138 0.4138 0.4138 

(0.5,0) 0.5862 0.5862 0.5862 

(0.5,0.2) 0.5862 0.5862 0.5862 

(0.7,0) 0.6552 0.6552 0.6552 

(0.7,0.2) 0.6552 0.6552 0.6552 

 Pseudo-code 

A simple pseudo-code below outlines the implementation of 

MsFEM. It is obvious that this method can be realized very 

easily within the existing finite element code. 

Algorithm: 

Set up the coarse grid configuration, and obtain the fine grids 

information of each coarse grid 

For each coarse grid E, do 

-For each vertex i 

-Get E

i  and boundary conditions 

-End for 

End do 

Assemble macro stiffness matrix of coarse grid 

Assemble macro load vector 

Solve the global formulation 

Down scaling analysis. 

III. APPLICATION IN MAGNETO-STATIC PROBLEMS 

A. Mathematical model 

A magneto-static problem in 2-D is considered, and the 

governing equation of magneto-magnetic field is given by, 
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Boundary conditions are 
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Fig.3.  (a) Schematic of the simulation model, (b) coarse grids for MsFEM, (c) 

mesh grids for FEM. 

The simulation model is illustrated in Fig.3 (a), and it is 1/4 

part of the magnetic core. The ribbon magnetic core consists of 

10 sheets. The thickness of each sheet is 0.35mm, and the in-

sulation coating of each sheet is 0.0065mm. Current density 

js=12732.4 A/m2. Relative magnetic permeability μr is 10000 

for each sheet, and μr =1 for the air and the insulation, μ0 is 

vacuum permeability. 

The mesh for MsFEM, shown in Fig.3 (b), consists of 48 

coarse grids, 63 coarse-grid nodes. The mesh, depicted in 

Fig.3(c), is for the conventional FEM. MsFEM combined with 

FEM is proposed to solve this problem. For the green-region 

coarse grids, multiscale basis functions are constructed fol-

lowing the procedures of section II. For other coarse grids, 

basis constructions follow the conventional FEM procedures, 

by adopting the bilinear basis function. Oscillation boundary 

conditions are used for multiscale basis construction. Elements 

of stiffness matrix are obtained by (5). Results on fine grids can 

be calculated by (6). 

B. Results and discussions 

Multiscale basis functions for coarse grid containing path 

A-B are illustrated in Fig.4.  Obviously, they are different from 

the conventional polynomial basis functions. 

Result data of the green region shown in Fig.3 (b) are ex-

tracted. Magnetic potentials calculated by conventional FEM 

and MsFEM are drawn in Fig.5 and Fig.6, respectively. Result 

solved by MsFEM agrees quite well with conventional FEM by 

comparison. Magnetic potential along path A-B, depicted in 

Fig.3 (b), is shown in Fig.7. From Fig.8, the max relative error, 

solved by (9), is -0.002% of this path. 

z,FEM z,MsFEM

z,FEM

 
Relative error 100%

A A

A


              (9) 

Magnetic flux density along path A-B is given in Fig.9. There is 

a deviation between the MsFEM and FEM. The max relative 

error is 1.08%, which is acceptable. In addition, magnetic flux 

density along path C-D, depicted in Fig.10, for the corner part 
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of the core are examined to demonstrate accuracy for its po-

tential in arbitrary geometry modeling and calculation such as 

T-joints and corners. The maximum relative error is 4.75%. 
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Fig.4.  Multiscale basis for coarse grid containing path A-B. 

 

Fig.5.  Magnetic potential distribution calculated by FEM. 

 

Fig.6.  Magnetic potential distribution calculated by MsFEM. 

Computation burden comparison of MsFEM and FEM are 

shown in Table II. It is found that equation systems obtained by 

using MsFEM is much smaller. The solving scale of MsFEM is 

1/55.7 times as large of FEM. What is more, the normalized 

multiplication times for stiffness matrix formulation is 0.6284 

by adopting the MsFEM combined with FEM. Obviously, 

MsFEM combined with FEM could significantly reduce the 

computation burden while the accuracy is maintained. 

 
Fig.7.  Magnetic potential on path A-B solved by FEM and MsFEM. 

 
Fig.8.  Relative error along path A-B. 

 

Fig.9.  Magnetic flux density on path A-B computed by FEM and MsFEM. 

 

Fig.10.  Magnetic flux density on path C-D computed by FEM and MsFEM. 
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IV. CONCLUSION 

MsFEM combined with conventional FEM is proposed to 

solve magneto-static problem of ribbon magnetic core. Firstly, 

validation of MsFEM is examined by a simple case. Then, a 

magneto-static problem considered. By comparison the com-

putation cost, it can be concluded that MsFEM combined with 

FEM can alleviate the computational burden and requirement 

of hardware for ribbon magnetic core’s simulation effectively. 

What is more, it is a general and flexible method since it be 

implemented easily within the existing finite element code. 

TABLE II  

COMPUTATION BURDEN COMPARISON OF MSFEM AND FEM 

 FEM MsFEM 

Element number 3396 48 

Node number 3510 63 

Multiplication times 

(normalized) 
1 0.6284 

 

REFERENCES 

[1] P. Dular, J. Gyselinck, C. Geuzaine, N. Sadowski, and J. Bastos, “A 3-D 
magnetic vector potential formulation taking eddy currents in lamination 
stacks into account,” IEEE Trans. Magn., vol. 39, pp. 1424–1427, Mar. 
2003. 

[2] J. Gyselinck, R. Sabariego, and P. Dular, “A nonlinear time-domain 
homogenization technique for laminated iron cores in three-dimensional 
finite-element models,” IEEE Trans. Magn., vol. 42, pp. 763–766, Apr., 
2006. 

[3]  J. Gyselinck, P. Dular. “A time-domain homogenization technique for 
laminated iron cores in 3-D finite-element models,” IEEE Trans. Magn., 
vol. 40, pp. 856-859, Feb. 2004. 

[4] I. Niyonzima, R. V. Sabariego，P. Dular，C. Geuzaine, “Computational 
homogenization for laminated ferromagnetic cores in magnetodynamics,” 
IEEE Trans. on Magn., vol. 49, no. 5, pp. 2049-2052, 2013. 

[5] N. Duan, W. Xu, S. Wang, J. Zhu, and Y. Guo, “An improved XFEM with 
multiple high-order enrichment functions and low-order meshing ele-
ments for field analysis of electromagnetic devices with multiple nearby 
geometrical interfaces,” IEEE Trans. on Magn., vol. 51, pp. 1-4, Mar. 
2015. 

[6] K. Hannukainen, J. Schöberl, “Two-scale homogenization of the 
nonlinear eddy current problem with FEM,” IEEE Trans. on Magn., 
vol.50, pp.413-416, Feb., 2014. 

[7] K. Hollaus, J. Schöberl, “Multi-scale FEM and magnetic vector potential 
a for 3D eddy currents in laminated media,” Compel International 
Journal of Computations & Mathematics in Electrical vol. 34, 
pp.1598-1608, 2015. 

[8] T. Y Hou, X. Wu, “A multiscale finite element method for elliptic 
problems in composite materials and porous media,” Journal of 
Computational Physics, vol. 134, pp.169-189, 1997. 

[9] T. Y Hou, “Multiscale modelling and computation of fluid flow,” Inter-
national Journal for Numerical Methods in Fluids, vol. 47, pp. 707-719, 
2010. 

[10] Q. Xue, S. Ye, “Application of multi-scale finite element method to 
simulation of groundwater flow,” Journal of hydraulic engineering, vol. 
35, pp.07-13, 2004. 

[11] H. Zhang, J. Lü, Z. Fu, “Extended multiscale finite element method for 
mechanical analysis of heterogeneous materials,” Acta Mechanica Sinica, 
vol. 26, pp. 899-920, 2010. 

[12] O. Bottauscio, A. Manzin, “Comparison of multiscale models for eddy 
current computation in granular magnetic materials,” Journal of Com-
putational Physics, vol. 253, pp.1-17, 2013.  

 

 

 

 

 

Hailin Li was born in Hubei, China, in 

1988. He received his B.E. from the Henan 

Polytechnic University, Henan, China, in 

2011; M.E. from Shenyang University of 

Technology, Liaoning, China, in 2014.  

He is currently studying for a Ph.D. in 

Xi’an Jiaotong University, Shaanxi, China, 

all in electrical engineering. His major 

research interest is numerical analysis of 

electromagnetic field and multi-physics coupling. 

 

 

 

Zuqi Tang received the B.S. (2007) in 

mathematics from Wuhan University, 

China, the M.S. (2009) in applied mathe-

matics, and the Ph.D. (2012) in electrical 

engineering in the University of Lille. 

From 2017, he is the Associate Professor in 

Electrical Engineering Department in 

University of Lille.   

His current research is focused on the 

numerical modeling and analysis in computational electro-

magnetism, as well as coupled multi-physical problems. 
 
 

 

Shuhong Wang (M’11-SM’13) was born 

in Shaanxi, China, in 1968. He received the 

B.E., M.E., and Ph.D. degrees from Xi’an 

Jiaotong University, Xi’an, China, in 1990, 

1993, and 2002, respectively, all in 

electrical engineering.  

He is currently a Professor with the School 

of Electrical Engineering, Xi’an Jiaotong 

University.His research interests include 

numerical analysis of electromagnetic field, and design and 

optimization of electromagnetic devices. 

 

 

 

Jianguo Zhu (S’93–M’96–SM’03) Prof. 

J.G. Zhu received his BE in 1982 from 

Jiangsu Institute of Technology, ME in 

1987 from Shanghai University of Tech-

nology, China, and PhD in 1995 from 

University of Technology, Sydney (UTS), 

Australia, all in electrical engineering.  

From 1982 to 1990, he was employed by 

Jiangsu Institute of Technology, China, as 

an associate lecturer and later on lecturer. In 1994, he was 

appointed a lecturer in School of Electrical Engineering at UTS. 

He was promoted to full professor of electrical engineering in 

2004. Professor Zhu joined the University of Sydney in 2018. 

His current research interests include electromagnetics, mag-

netic properties of materials, electrical machines and drives, 

power electronics, and green energy systems.  


