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Abstract—Design and optimization of electrical drive systems 

often involve simultaneous consideration of multiple objectives 

that usually contradict to each other and multiple disciplines that 

normally coupled to each other. This paper aims to present 

efficient system-level multiobjective optimization methods for the 

multidisciplinary design optimization of electrical drive systems. 

From the perspective of quality control, deterministic and robust 

approaches will be investigated for the development of the 

optimization models for the proposed methods. Meanwhile, two 

approximation methods, Kriging model and Taylor expansion are 

employed to decrease the computation/simulation cost. To 

illustrate the advantages of the proposed methods, a drive system 

with a permanent magnet synchronous motor driven by a field 

oriented control system is investigated. Deterministic and robust 

Pareto optimal solutions are presented and compared in terms of 

several steady-state and dynamic performances (like average 

torque and speed overshoot) of the drive system. The robust 

multiobjective optimization method can produce optimal Pareto 

solutions with high manufacturing quality for the drive system.  

 
Index Terms—Electrical drive systems, electrical machines, 

multidisciplinary design optimization, multiobjective 

optimization, robust design optimization. 

 

I. INTRODUCTION 

LECTRICAL machines and drive systems are the crucial 

components in many appliances and industrial systems like 

electric vehicles. Their analysis and design optimization 

processes become more and more complex and challenging as 

more disciplines (like electromagnetics, structural mechanics, 

heat transfer and control), constraints/objectives are involved, 

such as maximizing torque/power and efficiency, minimizing 

the material cost, volume, cogging torque and torque ripple of 

the motor. These objectives usually contradict to each other like 

material cost and average torque. These disciplines are 

normally strong coupled and coupled field analysis is always 

required, such as electromagnetic-thermal analysis and 

electromagnetic- structural analysis [1-6].  

To achieve multiobjective optimal performance of electrical 

drive systems for applications of challenging specifications, 

such as electric vehicles and wind power generation, it is of  
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great significance to take a systematic multidisciplinary design 

analysis and optimization. Thus, multiobjective and 

multidisciplinary analysis and design optimization is a critical 

and challenging research topic in this field [1, 2].  

    Regarding the multiobjective optimization of electrical drive 

systems, there are only a few studies. The common practice is 

on the motor itself, without much consideration on the control 

and power electronics. However, these design optimization 

methods are on component level, i.e. motor level, rather than on 

system level as the control schemes have not been optimized. 

Therefore, the system’s performance, especially the dynamic 

performances cannot be ensured [7-9].  

On the other hand, the final performance of produced 

electrical machines and systems highly depends on the practical 

material diversities (especially for the magnetic materials) and 

manufacturing tolerances. To decrease the sensitivity of these 

uncertainties and their effects on the performance, robust 

design optimization should be investigated in the early design 

stage of drive systems [1, 2, 3, 10-13]. These uncertainties have 

not considered in the deterministic approach of design 

optimization. Thus, the performance and manufacturing quality 

of the produced motors cannot be ensured by conventional 

deterministic design optimization approach. Currently, not 

much work has been reported [1], [2]. 

To solve these two issues, deterministic and robust 

approaches have been investigated for the system-level single- 

objective design optimization of electrical drive systems, and 

promising results have been obtained [1-4]. The main aim of 

this work is to investigate efficient multiobjective and 

multidisciplinary optimization methods for drive systems. 

Besides the optimization model like deterministic and robust 

approaches, the optimization efficiency is another critical issue. 

To deal with this issue, two kinds of approximate techniques 

will be presented for this purpose in this work. 

This paper aims to present efficient robust multiobjective 

and multidisciplinary design optimization methods for drive 

systems. Section II introduces the general multidisciplinary 

design analysis and optimization frameworks for drive systems. 

Section III presents the multiobjective optimization models for 

drive systems in terms of deterministic and robust approaches 

to consider multidisciplinary design specifications and 

constraints. Section IV introduces two approximate techniques, 

Kriging model and Taylor expansion to improve the efficiency 

of the multiobjective and robust optimization. Sections V and 

VI present the details including optimization models and results 
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comparison for an application of the proposed methods on a 

drive system, followed by the conclusion. 

II. MULTIDISCIPLINARY DESIGN OPTIMIZATION FRAMEWORK 

Fig. 1 shows a general multidisciplinary design framework 

for an electrical drive system with considerations of different 

components and disciplines, such as electromagnetics, heat 

transfer, power electronics and control system [1-3].  

    Fig. 2 shows a framework with more details for the 

multidisciplinary design and optimization of a drive system. As 

shown, the whole process consists of five steps. Firstly, define 

the requirements and specifications of the complete drive 

system, such as rated toque and power, and maximal given 

space. Secondly, design or select the types of motor, drive and 

controllers for the expected drive system. For example, there 

are several popular motor types for the application as drive 

machines in the (hybrid) electric vehicles, such as permanent 

magnet (PM) synchronous motors, induction machines and 

switched reluctance motor [14,15]. For each type, there are also 

several topologies like different rotor/stator poles. For another 

example, for the control system and strategies, popular ones 

include field oriented control (FOC) and direct torque control 

[1, 16-18]. Recently, model predictive control (MPC) has 

become a promising one for high efficiency control. Fig. 3 

shows a block diagram for the typical MPC schemes [1-3]. As 

shown, there are several control parameters which need to 

optimize, such as PI factors and the parameters in the cost 

function. Thirdly, design the analysis models for all 

components of the systems, such as FEA model for motor and 

simulation model for the controller [19-24]. Fourthly, define 

the optimization models for the whole system and each 

component, including optimization objectives, constraints and 

parameters, and implement the optimization to gain the 

optimization results finally, evaluate the steady and dynamic 

performances for the obtained optimal design schemes [3]. 

III. ROBUST MULTIOBJECTIVE OPTIMIZATION MODELS 

As shown in Fig. 2, there are many design parameters 

(including motor design parameters and control parameters), 

objectives and constraints in the step 4, such as optimizing the 

motor efficiency, average torque or torque density, minimizing 

the volume, weight, cost, loss and torque ripple. Therefore, the 

optimization is normally a multiobjective optimization problem 

with a model as  

 min :   ( ),  1,...,

s.t.       ( ) 0,   1,...,

            

i
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g j m



 

 

x
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x x x

,                            (1) 

where p and m are the numbers of the objectives f(x) and  

constraints g(x), respectively, xl and xu are the boundaries of x.     

Mathematically, model (1) is a deterministic model as it does 

not involve any noise factors for all design parameters and 

performances.  

    However, there are many uncertainties in the practical 

manufacturing of motors and their drive systems such as 

material diversities of PMs and manufacturing errors of motor 

dimensions. They can be regarded as the noise factors for drive 

systems as they have a big impact on the motor performance in 

mass production [1-3].  
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Fig. 1.  Multi-disciplinary design framework of an electrical drive system. 
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Fig. 2.  Design and optimization framework for an electrical drive system. 
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Fig. 3.  Block diagram of a typical MPC scheme for a PMSM drive. 

Therefore, due to these variations, all the design parameters 

and performance functions should be taken as variables, which 

will lead to the concept of uncertainty optimization. Many 

uncertainty optimization methods have been developed for 

industrial robust designs [25-28]. A robust approach called the 
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design for Six Sigma (DFSS) will be investigated in this work 

[29-32]. Under the framework of this robust approach, the 

robust multiobjective optimization model of (1) can be defined 

as   
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Fig. 4.  Sigma level and its equivalent reliability for quality control. 
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where μ stands for the mean, σ is the standard deviation, n the 

sigma level, USL and LSL are specification limits. In Statistics, 

this sigma level can be converted to a reliability as shown in Fig. 

4, which is also equivalent to the “short-term sigma quality” in 

the quality control field. For example, 3σ quality means a 

reliability of 99.73%, equivalent to 2700 defects per million 

opportunities (DPMO). However, in the long-term quality 

control, there is an approximate shift of 1.5σ for the mean. This 

shift will lead 3σ quality to 66,803 DPMO, a high defect rate. 

Hence, 6σ level has been accepted by industry as its equivalent 

DPMO is only 3.4 [3]. 

Finally, a probability of failure (POF) of an optimized drive 

system can be calculated by the following equation. 

1

POF 1 ( 0)
m

i

i

P g


                                (3) 

where ( 0)
i

P g   can be estimated by using the Monte Carlo 

method. This POF can be used to compare the reliabilities of 

the optimized drive systems given by different methods [3]. 

IV. TWO APPROXIMATION TECHNIQUES 

For the solving of (1) and (2), an efficient multiobjective 

optimization algorithm is needed. There are many options 

nowadays like multiobjective particle swarm optimization 

algorithm, non-dominated sorting genetic algorithm (NSGA) 

and NSGA II [1, 33]. However, the computation costs of 

optimizing mode (1) and (2) are extremely huge due to three 

main reasons. First, finite element analysis (FEA) is usually 

included for the motor’s design which generally needs huge 

computation cost, especially for some 3D flux permanent 

magnet (PM) machines with complex structures. Second, the 

Monte Carlo analysis (MCA) in the robust optimization, such 

as the estimation of manufacturing reliability and quality 

parameters, usually needs extra huge computational cost. Third, 

drive systems are always high-dimensional nonlinear 

multidisciplinary problems, which are challenges for 

optimization [1, 2]. To deal with these problems, two 

approximate techniques, Kriging model and Taylor expansion 

are introduced as follows.  

  Kriging model is a kind of surrogate models, similar to the 

response surface model (RSM), radial basis function model. 

They can be employed to reduce the computation cost of finite 

element model (FEM) [1, 34-36]. The response of Kriging 

model consists of two parts, a deterministic term y0(x) and a 

random error term z(x). It has the form as 

 

0( ) ( ) ( )y y z x x x ,                                   (4) 

where y0(x) may be a first order or second order RSM, z(x) is a 

random variable vector with mean zero, variance σ2 and 

covariance matrix [cij] as  

 
2 [ ( , )],ij i jc R R x x                                 (5) 

 

where R is a user-defined correlation function and R is the 

correlation matrix. Kriging is superior to RSM and radial basis 

function model due to its strong modeling ability of local 

nonlinearities [1].  

      Secondly, to reduce the computation cost of the evaluation 

of robust parameters, Taylor series approximate method will be 

used in this work. Generally, Monte Carlo method is used to 

estimate the mean and standard deviation terms in (2). However, 

its computational cost is very large. For example, if 104 random 

samples are used in MCA to estimate these robust parameters 

of means and standard deviations in (2), 104 extra FEA sample 

points and 104 simulation points in the control circuit also need 

to be evaluated. Therefore, the extra computation cost will be 

increased greatly, so an alternative method is needed. Taylor 

approximate method is a good choice as the magnitude of noise 

terms is very small [37].  The second-order expansion will be 

investigated in this work. 

Neglecting higher order terms, the second order Taylor’s 

expansion for a function or response y(x) has the form as 
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Taking mathematical expectation on both sides, the mean of 

this response can be calculated by  
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Then, with a similar process, the standard deviation of the 

response can be computed as 
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where D is the dimension of x. With (7) and (8), only (D+1) 

(D+2)/2 samples are needed for the simulation of control 

system, and a lot of computation cost can be saved. For 

example, for a drive system with 10 design parameters, only 66 

points are needed to evaluate the robust parameters; and this is 

much smaller than that in MCA as which needs 104 points. 

V. A DRIVE SYSTEM AND ITS OPTIMIZATION MODELS 

Figs. 5-7 show components of a drive system with a PM 

transverse flux machine (TFM) driven by the FOC scheme. Fig. 

5 illustrates the PM rotor soft magnetic composite (SMC) stator 

of a prototype designed in the previous work. The rated speed, 

torque and output power of this PM TFM are 1800 rev/min, 

3.40 Nm and 640 W, respectively. Table I lists several 

dimensional parameters for this motor [1, 38, 39].  

For the performance evaluation of this machine, 3D FEA 

model is required, as shown in Fig. 6. Table I lists seven design 

parameters to be investigated in the following multiobjective 

optimization process. They are significant to the motor 

performance based on out previous studies. To drive this motor, 

an FOC control scheme as shown in Fig. 7 is employed, where 

ωref =1800 r/min and Idref = 0. For the control part, the values of 

the PI (x8 and x9) are the optimization parameters. The 

conventional deterministic multiobjective optimization model 

of this drive system can be defined as 
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where f1 is the material cost of PM and copper (Cu) winding, f2 

the average torque, η motor efficiency, Pout (unit: W) the 

output power, sf the slot filling factor, Jc (unit: A/mm2) the 

current density in the winding, Te the relative error of torque 

(T), ωe the relative error of speed (ω), T and ω are responses 

dynamically output by the drive system. RMSE in the 

constraints stands for the root mean square error. 

With the structure of DFSS as shown in (2), the robust 

multiobjective and multidisciplinary optimization model of 

this drive system can be defined as 
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It should be noted that only the motor design parameters are 

variables as control parameters are digital real numbers. In the 

implementation, standard deviation of each parameter is 

defined as 1/3 of its manufacturing tolerance [30].  

 
                           (a)                                          (b) 

Fig. 5.  Prototype of a TFM, (a) PM rotor, (b) 3 stack SMC stator. 
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Fig. 6.  (a) One pole pitch for FEA, and (b) magnetic field distribution under 
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Fig. 7.  FOC scheme for the PM TFM. 

TABLE I 

MAIN DESIGN PARAMETERS OF PM-SMC TFM 

Par. Description Unit Value 

x1 PM circumferential angle degree 12 

x2 PM width mm 9 

x3 SMC tooth circumferential 

width 
mm 9 

x4 SMC tooth axial width mm 8 

x5 Air gap length mm 1.0 

x6 Number of turns turns 125 

x7 Diameter of copper wire mm 1.25 
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VI. RESULTS AND DISCUSSIONS 

Figs. 8-14 show the performance comparison of the motors 

for the optimal design scheme given by deterministic and 

robust multiobjective approaches. After comparison, the 

following conclusions can be drawn.  

1) Fig. 8 shows the Pareto optimal solutions of the 

investigated drive system obtained from two models, 

deterministic multiobjective optimization model (9) and robust 

model (10). As shown, the Pareto front of the robust approach is 

obviously lower than that of the deterministic approach. It 

means that the deterministic approach can provide a motor with 

higher torque for the same material cost. 

Meanwhile, the objectives of all deterministic and robust 

Pareto designs are better than those of the initial design. For the 

initial design, the output torque in the steady-state is 3.40 Nm 

and the motor material cost of PM and winging is $34.0. For all 

designs given by deterministic approach, the minimal torque is 

3.41 Nm, but the required material cost for this design is $25.1, 

which is much lower than that of initial design. For all designs 

given by robust approach, the minimal torque is 3.50 Nm, 

slightly larger than that of initial and deterministic designs. 

Similarly, the required material cost for this design is $26.6, 

slightly higher than that of deterministic design but much lower 

than that of initial design as well. Thus, motor performances 

have been improved greatly after multiobjective optimization. 

2) Fig. 9 shows the POF values of all optimal Pareto points 

given in the Fig. 8 for both design approaches. As shown, the 

POF values of robust optimal designs are almost 0, while the 

POF values of the deterministic optimal designs are unstable 

and many are higher than 20%. These are not good designs 

from the perspective of manufacturing.  

3) After reviewing the POF values and sigma levels for each 

constraint, it is found that the POF values of the constraints g4, 

g5 and g6 mainly account for the system’s POF. Fig. 10 

illustrates the POF values and sigma levels of them for both the 

optimal design schemes. As shown in Fig. 10(a), the POF 

values of g6 are all smaller than 0.2, while the values of g4 and 

g5 are very high and unstable. And as shown in Fig. 10(b), the 

sigma levels of some Pareto points are less than 2 for these 

three constraints, far away from the six-sigma quality. Thus, the 

better Pareto solutions given by deterministic approach as 

shown in Fig. 8 is obtained by the cost of the higher POF values 

and lower sigma levels. For robust approach, the sigma levels 

of all constraints are no less than 6. Thus, robust approach can 

improve the reliability (smaller POF values) and robustness 

(higher sigma levels) for the studied drive system.  

4) To show more details for the POF values, Figs. 11-14 

show the mean and standard deviation (STD) curves of the 

current density, torque RMSE, motor efficiency and output 

power for all Pareto points obtained from both approaches.  

For the constraint of the current density, as shown in Fig. 11, 

all the means and standard deviations of Pareto points gained 

from robust approach are obviously smaller than those from 

deterministic approach. For the deterministic approach, many 

MCA samples are higher than the limit of 6 A/mm2.  
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Fig. 8.  Pareto optimal solutions for the drive system given by both methods. 

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Number of Pareto Points

P
ro

b
a

b
il
it
y
 o

f 
F

a
il
u

re
 (

P
O

F
)

 

 

Deterministic

Robust

 

Fig. 9.  POF values for all optimal Pareto points given by both methods. 
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(a) 

 

(b) 

Fig. 11.  Mean (a) and standard deviation (b) of current density for all Pareto 

points. 

 

(a) 

 

(b) 

Fig. 12.  Mean (a) and standard deviation (b) of torque RMSE for all Pareto 

points 
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(b) 

Fig. 13.  Mean (a) and standard deviation (b) of motor efficiency for all Pareto 

points. 

 

(a) 

 

(b) 

Fig. 14.  Mean (a) and standard deviation (b) of motor output power for all 

Pareto points 
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TABLE II 

MEAN OF THE CONSTRAINTS  

Constrains 
Deterministic Robust 

μ σ μ σ 

η 0.818 0.001 0.826 0.001 

Pout 754.32 4.39 722.10 4.46 

Jc 5.88 0.11 5.32 0.09 

RMSE(Te) 0.019 0.006 0.017 0.003 

RMSE(ωe) 0.005 0.0125 0.001 0.0001 

 

For the constraint of the torque RMSE, as shown in Fig. 12, 

robust approach can provide some Pareto points with less 

means and standard deviations, but not all the points. However, 

the averages of the means and standard deviations of robust 

approach are 17 and 3 mNm respectively, which are smaller 

than those of the deterministic approach (19 and 6 mNm).  

For the motor efficiency, as shown in Fig. 13(a), the robust 

approach can provide motor design schemes with higher 

efficiency, except the last four Pareto points with high material 

cost (around $35 as shown in Fig. 8).  Moreover, the boundary 

of the motor efficiency is 79.5% as defined in (9), which is 

much smaller than those given by multiobjective optimization 

as shown in Fig. 13, so the POF of this constraint is almost 0 for 

both design approach. For the output power, as shown in Fig. 

14(a), the deterministic approach can provide motor design 

schemes with higher output power, except the first 13 Pareto 

points with low material cost (as shown in Fig. 8).  

   5) Table II lists the averages of all means and standard 

deviations of each constraint. As shown, except the second one, 

robust approach provides electrical drives with smaller 

standard deviations, meaning higher quality in manufacturing. 

 

VII. CONCLUSION 

In this work, multiobjective optimization was presented for 

the robust multidisciplinary design of drive systems. An 

efficient system-level robust multiobjective and 

multidisciplinary design optimization model was obtained 

based on the DFSS technique. Both the motor dimensions and 

the control parameters were investigated for system-level 

performance optimization. Two approximation techniques, 

Kriging model and Taylor series were employed to reduce the 

computational costs of FEA in motor, simulation effort in 

control system and the robust parameters in DFSS. Based on a 

case study, it was found that the reliabilities gained from the 

robust multiobjective approach are better. Therefore, robust 

multiobjective and multidisciplinary design optimization 

benefits the performance and manufacturing quality of 

electrical drive systems.  
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