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 

Abstract—Transverse-flux machines have the advantage of 

high force density owing to the peculiarity of decoupling of 

electric loading and magnetic loading. In this paper, a novel 

consequent-pole transverse-flux permanent magnet linear 

machine (CP-TFPMLM) is proposed and investigated. The 

origination of the proposed machine is from an existing 

transverse-flux flux-reversal linear machine (TF-FRLM), by 

partially replacing permanent magnet poles with soft magnetic 

iron for further reducing the cost of magnets. The fundamental 

structure and operating principle are introduced at first. The 

electromagnetic performance, including back EMF, detent force, 

and thrust force, are investigated with the finite element method. 

The proposed machine can achieve similar performance as 

compared to the TF-FRLM but with half of the magnets are used. 

 
Index Terms—Consequent pole, linear machine, primary PM, 

transverse flux.  

 

I. INTRODUCTION 

RANSVERSE flux machines (TFM), with main magnetic 

flux path flowing perpendicular to the direction of motion, 

have the advantage of decoupled electric loading and magnetic 

loading, which makes it possible to further improve the force 

density by decreasing the pole pitch and increasing the pole 

number [1]-[4]. Compared with the conventional machines, 

transverse flux machines are more prominent in high force 

density, design flexibility, and cost-effective advantages [5]-[7]. 

Therefore, they are extensively researched all over the world.  

Linear transverse flux machine integrates the direct-drive 

merit of linear machine and the high force density merit of the 

transverse-flux machine, hence, it is well suitable for low speed 

linear drive applications. Scholars have taken a large effort to 

improve and optimize the topologies of the transverse flux 

permanent magnet linear machines (TFPMLM) for different 

purposes. Kou et al proposed a bidirectional cross-linking  
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TFPMLM to ensure all the magnetic flux under coupling 

surface interlink with the winding, which will improve the 

machine’s inner space utilization and obtain a high force 

density [8]. Shin et al [9] proposed a double-sided TFPMLM to 

address the complex structure of transverse flux machinery, and 

the method for cogging force reduction was investigated in [10], 

and the design method for high force-to-weight ratio and low 

material cost was analyzed in [11]. For simplifying the 

manufacturing process, Zou et al [12] proposed a tubular 

TFPMLM, of which the primary core is made by laminated 

steel as same to the conventional rotary machines. The mature 

processing technology of traditional machines can be used in 

making transverse flux machines. The approach to suppress 

inter-pole flux linkage was investigated in [13] by introducing 

iron bridges, however, the overall structure of the machine 

became complex. The aforementioned TFPMLMs have 

permanent magnets and winding on separate side of the 

machine. By moving the magnets to the same side with 

armature coils, the secondary side can be further simplified, 

that is crucial for linear machines of long stator configuration. 

For long stroke applications, this kind machines can save 

manufacturing costs. Kang et al have investigated a TFPMLM 

with short primary for railway traction [14, 15]. The air gap flux 

density is improved by the gathering magnetic flux effect, 

hence higher force density can be achieved. But the structure of 

the twisted secondary cores seems to be a little complex and is 

hard for manufacturing. By applying the flux reversal theory in 

conventional machines into the transverse flux machine, a 

transverse-flux flux-reversal linear machine was proposed in 

[16]. Without twisting either the primary core or the secondary 

core, the TF-FRLM has a more simplified structure and is easy 

for fabricating. Furthermore, a flux switching TFPMLM was 

proposed in [17] combining the high force density advantage of 

transverse flux linear machine and the simple structure 

advantage of flux-switching linear machine.  

Recent research papers [18]-[19] reveal that the consequent 

pole structure can achieve less permanent magnet material 

usage [20]-[21] and improve the field weakening capability and 

power density [22] by few impacting of the other 

electromagnetic performances. Up to now, the applications of 

consequent-pole structure are mainly focused on the 

synchronous motors, namely, the magnets and windings are 

separately placed on stator or mover. And the transverse-flux 
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motors with consequent-pole structure have barely been widely 

investigated as the traditional longitudinal-flux motors. 

In this paper, a consequent-pole transverse flux permanent 

magnet linear machine is proposed and investigated. Firstly, the 

basic structure and operating principle are introduced. Then, 

the equivalent magnetic circuit is established. The flux linkage, 

back EMF, as well as thrust force expressions are deduced. 

Thirdly, the electromagnetic performance is investigated based 

on a three-dimensional FEM model, and the comparisons are 

made. Finally, some conclusions are drawn based on the 

analysis. 

II. CONFIGURATION AND OPERATING PRINCIPLE 

Fig. 1 presents the cross-section view of the proposed 

structure and its counterpart. The consequent-pole TFPMLM is 

originated from the topology of the TF-FRLM by substituting 

half of the primary magnets with magnetic cores as shown in 

Fig. 1 (b). All the left magnets have the same direction of 

magnetization. The formative shallow teeth are sandwiched by 

magnets, and are magnetized with the opposite polarity 

compared to the magnets. The basic operation principle of the 

proposed machine is similar to the TF-FRLM as shown in Fig. 

2. According to the principle of minimum reluctance, the flux 

produced by permanent magnets prefers accomplishing its path 

with the maximum permeance. As different magnets on nearby 

primary teeth are in alignment with secondary core, the 

flux-linkage in the coil will reverse its direction.  

When the winding is motivated, the armature reaction field 

distribution is established. As the ferrimagnetic pole is high 

permeable, most of the armature flux goes through the iron pole 

as depicted in Fig. 3 in the CP TFPMLM. The existence of 

ferrimagnetic poles reduces the total reluctance faced by the 

armature reaction field. Hence, the armature reaction field 

seems to be strengthened both in air gap and magnets areas. 

That’s to say, the PMs are more likely to be demagnetized in 

the CP TFPMLM.  
 

III. EQUIVALENT MAGNETIC CIRCUIT AND THEORETICAL 

ANALYSIS 

Fig. 4 shows the equivalent magnetic circuit model of the 

proposed CP TFPMLM. Wherein, Rt, Rpy represent the 

reluctance of primary tooth and primary yoke, respectively. Rm 

is the permanent magnet reluctance. Rδ is the air gap reluctance. 

Rsy is the secondary core reluctance. Rpyσ and Rppσ represent the 

leakage reluctance in the primary core and air gap, respectively.  

The loop equations can be obtained by applying the 

Kirchhoff’s law in magnetic circuit, there are 

(1) 

where Fm is the equivalent magnetomotive force of the 

permanent magnet, and there is 

  (2) 

where Hc is the intrinsic coercivity of magnets, hm is the height 

of the magnets in the direction of magnetization. 

At no-load condition, the saturation in the magnetic core can 

be ignored, hence, the relevant reluctances with high 

permeance can be removed from (1), which gives 

 
(a)                                      (b) 

Fig. 3.  Armature reaction fields in different types of TFLMs. (a) Conventional 

TF-FRLM. (b) Consequent pole TPMLM. 
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Fig. 1.  Transverse-flux linear motor with different permanent magnet 

arrangement topologies. (a) Conventional TF-FRLM. (b) Consequent pole 

TFPMLM. 

 

(a)                                                                       (b) 

Fig. 2  The magnetic path in the CP TFPMLM. (a) The positive maximum flux 

linkage. (b) The negative maximum flux linkage. 

 
Fig. 4.  Equivalent magnetic circuit of the CP TPMLM. 

 
Fig. 4.  Equivalent magnetic circuit of the CP TPMLM. 
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  (3) 

 By solving (3), the main flux intertwining with the coil can 

be expressed as 

  (4) 

 On account of the flux excited by different magnets flowing 

in opposite direction, the net flux linkage can be deduced as 

(5) 

 Equation (5) shows that the total flux linkage produced by 

the magnets is mainly proportional to the difference of the air 

gap reluctance faced by each magnet. Along with the motion of 

the mover, the air gap reluctance varies with a period of 2τ (τ is 

the pole pitch), therefore, by neglecting the higher harmonic 

orders, the flux linkage can be expressed simply as 

  (6) 

where N is the turns of each coil, and x is the displacement of 

the mover. 

 With the motion of the mover, the electromotive force will 

produce at the open-circuit coil ends according to Faraday’s 

law, which gives 

  (7) 

where v indicates the velocity of the mover.  

 When only the q-axis current is motivated, the thrust force 

will produce. For a three-phase CP TFPMLM, the thrust force 

can be deduced as 

  (8) 

where I is the root mean square value of applied current. 

IV. PERFORMANCE EVALUATION 

The field distribution of the TFPMLM is inherently three 

dimensional. Hence, it is hard to use 2-D finite element method 

(FEM) to investigated this kind machine, hence, the 3-D FEM 

is employed in this paper to fully consider the stray magnetic 

flux and leakage flux distribution. The fundamental parameters 

are listed in Table. I. In order to investigated the performance of 

the proposed consequent-pole machine, the same parameters 

are applied to a TF-FRLM. 

A. Field Distribution 

Fig. 5 depicts the no-load field distribution of the CP 

TFPMLM. The net magnetic flux linkage in the winding 

reaches the maximum value in Fig. 5(a) and (c), while it is zero 

in Fig. 5(b) and (d). The flux density in the primary tooth is 

about 1.2T. The highest flux density is about 1.6T on the corner 

of the tooth tip.  

The normal component of air gap flux density are depicted in 

Fig. 6 both along transversal and longitudinal direction. As can 

 
(a)                                                                                (b) 

 
(c)                                                                                 (d) 

Fig. 5.  Field distribution of the CP TPMLM at no-load condition. (a) Clouds 

map of flux density at x = 0. (b) Clouds map of flux density at x = τ/2. (c) 

Vector plot of flux density at x = 0. (d) Vector plot of flux density at x = τ/2. 
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Fig. 6.  Air gap flux density distribution of the CP TPMLM at no-load 
condition. (a) Displacement along transversal direction. (b) Displacement 

along longitudinal direction. 

TABLE I. 
PARAMETERS OF TRANSVERSE FLUX LINEAR MACHINE. 

Symbol Items 
CP 

TFPMLM 
TF-FRLM 

p Number of poles 4 

q Number of primary teeth 4 
τ Pole pitch (mm) 7.5 

ws Width of slot (mm) 20 

hs Height of slot (mm) 25 

lM Length of slot (mm) 34 

hM Height of slot (mm) 3 

g Length of air gap (mm) 1 

wst Width of secondary core (mm) 7.5 

J Current density (A/mm2) 4.8 

N Number of coils 120 
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be seen, the flux density varies in both direction with unequal 

amplitude. On the transversal direction, the flux density is a 

constant value under both PM pole and iron pole. The 

maximum value is obtained when the active part is in alignment 

with the secondary core. The maximum flux density under PM 

pole is about 0.71T and 0.45T for iron pole, while it is 0.4T and 

0.11T, respectively, for the unalignment position. Along the 

longitudinal direction, the waveform of the air gap flux density 

distributed with a period of 2τ (τ = 7.5mm). The maximum flux 

density under PM pole is obtain when PM is in alignment with 

secondary cores, while the iron pole get its minimum value. 

The sunk wave under iron pole is caused by the inter-pole 

leakage of the magnets. When the iron pole is in alignment with 

secondary cores, the iron pole region obtains the maximum 

value. It can be seen that the flux density under iron poles is 

always in opposite direction with the PM poles. 

B. No-load Flux Linkage and back EMF 

Fig. 7 shows the waveforms of the single-phase CP 

TFPMLM. The amplitude of the CP TFPMLM is 86.9mWb. It 

has been promoted by about 25% compared to the TF-FRLM 

with the same magnet height and coil turns. The open-circuit 

EMF is shown in Fig. 8 at the velocity of 1m/s. The waveforms 

of the back EMF are not strictly sinusoidal but with high order 

harmonics. By applying Fourier transformation, the harmonic 

distribution is obtained. As can be seen, the third order 

harmonic is dominant in both machines. The fifth harmonic is 

much bigger in the CP TFPMLM. The fundamental amplitude 

of the CP TFPMLM is 34.29V, while it is 27.91V for the 

TF-FRLM. The fundamental amplitude is improved by 22.9% 

with consequent-pole configuration. The third harmonic 

amplitude of the CP TFPMLM is 4.79V, about 14% of the 

fundamental harmonic, while it is 8.4% for the TF-FRLM. 

However, the third harmonic can be eliminated by star 

connection of the windings. 

C. Detent Force 

The detent force is resulted from the interaction of magnets 

and magnetic material in the linear machine. The single-phase 

and three-phase detent force of the transverse flux linear 
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Fig. 7.  Distribution of flux linkage waveforms. 
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Fig. 8.  Distribution of back EMF. (a) Waveforms distribution. (b) Harmonic 

order and amplitude distribution. 

0 60 120 180 240 300 360

-150

-100

-50

0

50

100

150

F
o

rc
e 

(N
)

Elec.degree (°)

 Single-phase detent force of TF-FRLM

 Single-phase detent force of CP TFPMLM

 Resultant detent force of TF-FRLM

 Resultant detent force of CP TFPMLM

 
Fig. 9.  Distribution of detent force. 
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Fig. 10.  Distribution of thrust force waveforms. (a) Thrust force of the CP 

TFPMLM. (b) Thrust force comparison at rated current. 
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machine are indicated in Fig. 9. As observed, the three-phase 

detent force are drastically reduced when compared with the 

single-phase value. The maximum detent force of a single 

phase is about 125N for both kind machines. The peak force is 

unequal in an electrical period. The fluctuation is mainly 

caused by the end force effect. However, most of the harmonic 

orders has been cancelled out beside of the third and its integral 

times orders. The amplitude of the CP TFPMLM is 6N which is 

only half of the TF-FRLM’s.  

D. Thrust Force 

Fig. 10 describes the thrust waveforms over an electrical 

period. The average thrust force of the CP TFPMLM is 384.4N, 

while it is 352.4N for the TF-FRLM. Hence, the thrust force of 

the proposed machine has improved by 9.1% at the same rated 

current even through the magnets has been reduced. 

Furthermore, a portion of negative thrust of a single-phase can 

be observed form Fig. 10 (a), which is caused by the detent 

force when the applied instantaneous current is relatively low. 

The CP TFPMLM has a force ripple of about 41.3N, which is a 

little higher than the TF-FRLM of 36.5N. The main reason is 

that the proposed machine is more easy to be saturated. Further, 

by increasing the applied current, the average thrust force 

changes as shown in Fig. 11. It can be found, when the applied 

current is under 7A, the average thrust force of the CP 

TFPMLM is higher than the TF-FRLM. Nevertheless, when the 

current keeps enlarged, the thrust force of the CP TFPMLM 

gains a little lower because of the saturation of the core. That is 

to say, the overload capacity of the CP TFPMLM is poor. 

E. Demagnetization of Permanent Magnets 

Fig. 12 shows the field distribution of permanent magnets 

under the maximum demagnetization current in different 

machines. As it can be seen, the operating point in the CP 

TFPMLM is much lower than that in the TF-FRLM. The lowest 

operating points occurs near the edges in the TF-FRLM. The 

average flux density in the magnets is about 0.6T. However, in 

the CP TFPMLM, the demagnetization area occurs mostly in 

the middle of the magnets. In this region, the flux density is 

about 0.3T. Hence, the magnets in the CP TFPMLM are more 

likely to be demagnetized at the same ampere-turns. 

Nevertheless, from another point of view, since the motor 

operating principle needs the permanent magnet to be 

demagnetized by the armature reaction magnetic field. The 

demagnetization effect is stronger in the CP TFPMLM, hence, 

the motor can also achieve a higher thrust force. 

V. CONCLUSION 

A consequent-pole permanent magnet linear machine has 

been proposed and investigated in this paper. By adopting of 

consequent-pole structure, the usage of permanent magnet 

material is saved and the overall manufacturing cost can be 

reduced. Nevertheless, the electromagnetic performance is 

barely impacted, or even has been improved. The flux linkage 

and back EMF are improved by 25% and 22.9%, respectively, 

while the detent force is reduced by near 50% when compared 

to its counterpart. The average thrust force was 9% higher than 

the TF-FRLM under the same rated current. But the proposed 

machine seems to be more sensitive to saturation influence and 

its overload capability is limited. Hence, the proposed machine 

is suitable for long stroke applications at continuous duty with 

the advantage of low cost. 
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