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 
Abstract—In this paper, direct model predictive control 

(DMPC) of the noninverting buck-boost DC-DC converter with 
magnetic coupling between input and output is proposed. Unlike 
most of the other converters, the subject converter has the 
advantage of exhibiting minimum phase behavior in the boost 
mode. However, a major issue that arises in the classical control of 
the converter is the dead zone near the transition of the buck and 
boost mode. The reason for the dead zone is practically 
unrealizable duty cycles, which are close to zero or unity, of pulse 
width modulation (PWM) near the transition region. To overcome 
this issue, we propose to use DMPC. In DMPC, the switches are 
manipulated directly by the controller without the need of PWM. 
Thereby, avoiding the dead zone altogether. DMPC also offers 
several other advantages over classical techniques that include 
optimality and explicit current constraints. Simulations of the 
proposed DMPC technique on the converter show that the dead 
zone has been successfully avoided. Moreover, simulations show 
that the DMPC technique results in a significantly improved 
performance as compared to the classical control techniques in 
terms of response time, reference tracking, and overshoot. 
 

Index Terms— Noninverting buck-boost DC-DC converter, 
Direct model predictive control, Dead zone avoidance.  

I. INTRODUCTION 

N numerous applications, like battery charging/discharging, 
fuel-cell regulation systems, power factor correction, and 

MPPT of solar panels, a dc-dc converter is used to obtain a 
controlled output from a varying input source [1]-[3]. A 
non-inverting buck-boost converter is preferred in applications 
requiring buck-boost properties and having low current/voltage 
ripples [4]. Their beneficial aspects incorporate high power 
transfer efficiency, small voltage ripples, and small stresses on 
active and passive components [5], [6]. 

Majority of the converters that operate in boost mode exhibit 
right half plane (RHP) zeros in continuous-conduction-mode. 
The existence of these RHP zeros, which makes the system 
non-minimum phase, has the tendency to make the controller 
design difficult, limit the loop bandwidth, penalize output  
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capacitor size, and make the converter susceptible to 
oscillations[1], [7]. The combination of magnetic coupling 
between input and output inductors [8] and a series 
resistor-capacitor network [9] depicted in Fig. 1, has 
successfully eliminated RHP zeros. Thus, the system can easily 
achieve wide control bandwidth. Other advantages include the 
prospect of regulating input/output currents or voltages [10] 
with quick and response [11]. 

 
However, the topology in Fig. 1 also possesses an extensive 

downside. The switching pulses generated near the vicinity of 
transition between buck and the boost mode are so short that a 
practical circuit cannot catch it. As a result, a so-called dead 
zone appears close to the transition region. The appeared dead 
zone denotes the discontinuity in the converter conversion ratio 
(1) defined in a single duty ratio control variable u which takes 
values between 0 and 2 [2] as shown in Fig. 2. The dead zone 
causes excessive ripples in the output voltage and potential 
disorder of the converter [12]. The vanishing of dead zone is of 
great importance because we want soft transition between buck 
and the boost mode in several applications [13]-[15]. 
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Fig. 2. Dead zone at the transition of buck and boost mode: M(u) is the 
conversion ratio where u is duty ratio control variable. 
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Fig. 1. Circuit diagram of noninverting Buck-Boost converter. 
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Numerous dead zone minimization methods have been used 
in the literature [5], [16]-[21]. A well-known technique is 
focused on the overlap of buck and the boost operation modes 
at the buck-boost transitions [2], [17], [18]. Its principle 
disadvantages are: ripples in output voltage are poorly 
minimized, there are substantial subharmonics and the 
switching losses are almost twice [2]. In [12] much better 
results were obtained regarding dead-zone minimization, in 
which the overlapping of buck and boost mode is merged and 
fixed with the duty cycle of buck mode to its optimum 
attainable value. But the main drawback of this technique is that 
the ripples are improved at the cost of efficiency in the boost 
mode [12]. Another strategy was proposed in [22]. The 
principle concept of this technique is the addition of the dead 
zone avoidance and minimization (DZAM) machine in the 
control loop that will vanish the dead zone. Unfortunately, this 
technique is difficult to actualize in analog control systems. 

In the literature, some other methods are used for attaining 
soft transitions, which can't be readily employed to the 
converter topology examined in this paper. They either rely on 
sliding mode control [23], [24] or adjust each duty cycle to 
exactly half [15].  

The main contribution of this paper is to use direct model 
predictive control (DMPC) for the aforementioned topology 
that can completely avoid the dead zone. DMPC is one of the 
emerging control techniques for power electronics converters 
[25]-[36]. Key advantages of DMPC are: it can deal with plant 
nonlinearities, multiple inputs, multiple control objectives, and 
any constraints on inputs/states while ensuring optimal control 
[37]. Another advantage of DMPC is that unlike PWM control, 
the switch can be directly controlled without a demodulator. 
Avoiding demodulator allows to use an accurate model of the 
converter that incorporates switching nonlinearities as 
compared to an averaged model. The use of accurate model 
along with optimal control allows DMPC to exhibit superior 
performance for some power converters as compared to most 
other control techniques [25], [28], [34]. In DMPC switch 
transitions are only done at a fixed sampling time, thus limiting 
the minimum width of the switching pulses. This completely 
wipes out the dead zone to attain smooth transitions between 
buck and boost mode. A disadvantage of DMPC is its high 
computational complexity. However, it has been mitigated by 
some efficient techniques and the availability of fast speed 
microprocessors [28], [38]. Another key point is that the 
converter in Fig. 1 is minimum phase. Therefore, we can have a 
small value of prediction horizon to reduce the computational 
complexity. 

The paper is organized as follows. Section II presents the 
state space mathematical model of the converter. The proposed 
control scheme is presented in Section III. In Section IV the 
simulation results are shown. Finally, the conclusion is stated in 
Section V. 

II. STATE SPACE MODELING OF THE CONVERTER 

The buck-boost converter depicted in Fig. 1 contains two 
controllable transistors Q1 and Q2; and two power diodes D1 
and D2. The inductors L and Lm with the internal resistances RL 

and RLm , respectively, and capacitors C and C0 are used for 
storing and delivering energy according to the operating mode 
of the converter. The converter has two controllable inputs S1 
and S2, which represent the gate signals of transistors Q1 and Q2, 
respectively. 

TABLE I 
SWITCHING STATES 

S1 S2 Status 

0 0 Used in Buck Mode 
0 1 Used in Buck, Boost Mode 

1 0 Used in Boost Mode 
1 1 Not Used 
   

 
In the PWM based control an averaged model is used. 

However, we will utilize the model for all switching 
combinations. All the possible combinations of controllable 
inputs are shown in Table I, where 1 denote ON state and 0 
denotes OFF state of the transistor. Assuming 
continuous-conduction-mode (CCM), three different linear 
models are related with the switch positions. The 
continuous-time model of the converter is as follows: 
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The continuous-time model in Equation (3) can be 
discretized by using Euler approximation to obtain the 
following: 
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where 
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is the state vector,  i iG I ATs  for 1,2,3, ,i H BTs I   

denotes the identity matrix and TS is the sampling time. 
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III. PROPOSED CONTROL SCHEME 

The control technique used in this paper is direct model 
predictive control (DMPC). In DMPC the control law is based 
on an optimization problem. The optimization problem 
minimizes an objective function, which penalizes deviation 
from the control goals. The optimization problem finds the 
optimal switching sequence for the next N time samples, where 
N is the prediction horizon. In DMPC only the first switch 
positions in the optimal switching sequence are applied to the 
circuit and the optimization problem is solved again at the next 
time sample to incorporate feedback [39]. In DMPC the control 
mechanism is carried out by the direct manipulation of switch 
states for the complete sampling interval. Consequently, this 
technique never demands a modulator [40].  

In our case we have two control goals. The first is to regulate 
the output voltage and the second is to improve efficiency by 
limiting excessive switching transitions. The objective function 
is designed such that it calculates the sum of output voltage 
error and the difference between two successive switching 
states over the finite prediction horizon N. The latter term is 
designed to reduce the switching frequency and avoid 
unnecessary switching. The objective function at time instant k 
is as follows: 

        0 1 2
1

       
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where    0 0=  ：err refv n l v v n l is the error in output 

voltage, vref is the reference output voltage, 

     1 1 1= 1     ：s n l s n l s n l  denotes a change in the 

position of s1, and      2 2 2= 1     ：s n l s n l s n l  denotes a 

change in the position of s2, and   is the weighting factor. 
The optimization problem in MPC is the minimization of the 

objective function Equation (5) to find optimal values of s1 and 
s2 over the prediction horizon. The optimization problem is 
stated below: 
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The constraint Equation (6b) ensures that only the feasible 
input combination shown in Table I are allowed. Solving the 
optimization problem results in optimal inputs for time instant n 
and future inputs for the remainder of prediction horizon. In 
DMPC, only the first element of the computed optimal 
sequences is applied to the system. At the next time sample, the 
state are measured or estimated and the optimization problem is 
solved again. This mechanism allows feedback in DMPC. 

The optimization problem Equation (6) has an exponential 

computational complexity with the prediction horizon. Since 
there are three members in the set  , there is a possibility of  

3N  distinct sequence. In enumeration based techniques of 
DMPC the objective function Equation (5) has to be evaluated 
for each possible sequence [28]. Moreover, based on the model 
the future states also have to be predicted for each possible 
sequence. These calculations lead to increase in the total 
computational complexity. However, in our case we can keep a 
short horizon since the converter is minimum phase. 

An advantage of DMPC is that the control inputs s1 and s1 can 
only be changed after the sampling interval. Therefore, unlike 
PWM, the transistor gate pulses are never smaller the sampling 
time, which may have issues in realizing practically. Moreover, 
in DMPC the converter doesn't exclusively operate in either the 
buck mode or boost mode. DMPC chooses the best feasible 
inputs in   that could meet the control goals. Another 
advantage of DMPC is that we can put other constraints in the 
optimization problem Equation (6). For example, a constraint 
on the maximum inductor currents can be used to avoid a 
current control loop used in classical control techniques. 

The concept of proposed DMPC is summarized in algorithm 
1, in which function f represents the state space model in 
Equation (4). Flow chart is abridged in Fig. 3. Initially the best 

known optimal cost J  is initialized by a big number and all 

the possible 3N  sequences of inputs are generated. For each 
sequence the states and output are predicted that are used to  

Algorithm 1 DMPC algorithm 

Function *
1 ( ),s n , *

2 ( )s n =DMPC       1 2, 1 ,ˆ 2x n s n s n   

                    1 2; ;* * *J n s n s      

For all S1, S2 over N  do 
             J=0 
  For n=1 to N do 
        If  1 1s n   &  2 1s n  then 

                             1 1 21 , ,x n f x n s n s n   

             else if  1 0s n   &  2 1s n   then 

                             2 1 21 , ,x n f x n s n s n   

             else 

                              1 3 1 2x n f x n ,s n ,s n   

             end if 
        0 01 1err refv n v v n     

          1 1 1= 1s n s n s n  ：  

          2 2 2= 1s n s n s n  ：  

           0 1 21errJ J v n λ s n s n        

     end for 
 if  *J J n  then 

       * * *
1 1 2 2( ) J, ( ) (1), ( ) (1)J n s n S s n S    

 
end function 
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evaluate the objective function. If the objective function is 

smaller than J , then the best known cost J  and best known 
input sequence is updated. The block diagram of the converter 
along with proposed controller is depicted in Fig. 4. 

 

Fig. 3.  Flowchart of the DMPC algorithm. 

 

Fig. 4.  Block diagram of DMPC algorithm. 

IV. SIMULATION RESULTS AND COMPARISON 

The converter depicted in Fig. 1 is simulated with the 
proposed control and the obtained results are presented here. 
Five different cases are considered. In case 1 the converter 
start-up is observed. In case 2, step up and step down variation 
are made in reference voltage. In case 3 step up/down variation 
are made in the input voltage and the dynamic response of the 
converter is examined. In case 4, step down change is made in 
load resistor and response of controllers is observed. In case 5 
ramp change in input is made to examine the controller's 
response close to buck/boost transition region. 

The values of the parameters used are: 14 ,mL μH  

0.5LmR   , 30μH, 0.3Ω, 2.6 , 1.5ΩL dL R C μF R    , 

022 , 110dC μF C μF  and 0 9.6ΩR  . Input voltage Vs 

varies in the range of 39V  to 55V The control goal is to 
regulate the output voltage V0  to 48V. The weighting factor λ  
is kept 0.1, while the prediction horizon N is taken as 6. The 
sampling time 1sT μs and sampling frequency 1sF MHz . 

We have been able to use such a small N  because the system is 
minimum phase. A small value of N  helps to reduce the 
computational complexity of the algorithm. The results of the 
proposed DMPC are compared with PI controller. The PI 
controller has a proportional gain of 1/25 and integral gain of 

100. 

 
(a) 

 
(b) 

Fig. 5. Converter start up (a) Controlled through proposed DMPC (b) 
Controlled through PI. 
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A. Case 1: Start up with Constraints on Inductor Currents 

The start-up of the converter with a constant input voltage of 
39V is simulated with both PI controller and the proposed 

DMPC. In DMPC the currents  Li n  and  Lmi n  are 

constrained to be less than 20A each. The results are shown in 
Fig. 5. The inductor currents rise sharply to a peak of more than 
100A in PI. On the other hand, the inductor currents in DMPC 
stay within the specified constraint of 20A . The settling time of 
DMPC is approximately 0.3ms as compared to approximately 
2.5ms  for PI control. Moreover, the DMPC has no overshoot as 
compared to an overshoot of nearly 42%  for PI control. The 
ripple in the output voltage for both control schemes is 0.2%. 
The comparison shows that the proposed DMPC has a much 
improved performance as compared to PI control. 

 
(a) 

 
(b) 

Fig. 6. Step changes in output voltage reference (a) Controlled through 
proposed DMPC (b) Controlled through PI 

B. Case 2: Step Down/up Change in Output Reference Voltage 

The reference voltage was stepped down from 48V to 30V 
and stepped up back to 48V at t=6ms and t=12ms , respectively. 
It can be seen in Fig. 6, that DMPC tracks the new reference 
quickly without any undershoot or overshoot as compared to 
the PI controller. 

C. Case 3: Step Down/up Change in Input Voltage 

In this case the input voltage was first stepped up from 39V to 
55V at t=6ms  and then stepped down from 55V  to 39V  at 
t=12ms . Response of both the DMPC and PI controller is 
depicted in Fig. 7. At the changes in input voltage, the DMPC 
controller keeps the converter output at the required reference 

without any significant deviation. Whereas the PI controller has 
an undershoot/overshoot and slow to track the reference.  

Besides the advantages stated earlier, in this particular case 
the inherent feed forward control in DMPC contributes to the 
improved performance. The formulation of DMPC involves the 
value of input voltage in the model of the plant, which has a 
feed forward effect. 

 
(a) 

 
(b) 

Fig. 7. Step changes in input voltage (a) Controlled through proposed DMPC (b) 
Controlled through PI. 

D. Case 4: Step Down Change in Load Resistor 

Usually, the load changes in an obscure way, which leads to a 
mismatch in model, and steady-state error in output voltage. In 
order to solve this problem, an additional external loop is 
needed to be designed, to provide state estimates and adjust the 
reference current to remove the steady state error. Although the 
PI-based loop may be sufficient to meet the above two goals, 
here a discrete-time Kalman filter is used in combination with 
DMPC and the performance is compared with PI. Due to the 
integral characteristic of the Kalman filter, it can accurately 
track the reference voltage. Here the load resistance drops to 
exactly half from 0 9.6ΩR   to 0 4.8ΩR   at 6msec , shown in 

Fig. 8. The converter is simulated in boost mode with input 
voltage of 39V and reference voltage is kept 48V. 

E. Case 5: Ramp Change in Input Voltage 

In this case a linearly varying source is applied as an input 
voltage to the converter operating at steady state operating 
conditions with output voltage reference of 48V . Response of 
both DMPC and PI controllers is depicted in Fig. 9. Zoomed 



ULLAH et al. : DIRECT MODEL PREDICTIVE CONTROL OF NONINVERTING BUCK-BOOST DC-DC CONVERTER 337

 
(a) 

 
(b) 

Fig. 8. Step down change in the load resistor (a) Controlled through proposed 
DMPC (b) Controlled through PI. 

view of output voltage and respective duty cycles of transition 
region around 48V  is given in Fig. 10. Fig. 10(a) clearly shows 
that in DMPC the smallest width of switching signals is 1μs , 

which is easy to realize practically. Whereas in Fig. 10(b) for PI 
control, the width of switching waveforms can become too 
small for practical realization, which leads to dead zone. 

 
(a) 

 
(b) 

Fig. 9. Output voltage of the converter with respect to ramp change in input 
voltage (a) Controlled through proposed DMPC (b) Controlled through PI 

 
(a) 

 
(b) 

Fig. 10. Zoomed view of output voltage and respective duty cycles round 
transition region (a) Controlled through proposed DMPC (b) Controlled 
through PI. 
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V. CONCLUSION 

In this paper we proposed direct model predictive control of 
non-inverting buck-boost DC-DC converter. A key advantage 
of DMPC is that it directly manipulates the switches without 
the need of any modulator. Thereby, eliminating the dead zone 
in transition between buck and boost mode, which is of major 
concern in control of the subject converter. Another advantage 
of DMPC include inclusion of current constraints that avoids 
the use of an extra current loop. Other beneficial aspects of the 
proposed DPMC is lesser overshoot/undershoot, quicker 
response time, and inherent feed forward. A usual drawback of 
DMPC is its computational complexity. However, the 
converter is minimum phase which makes it possible to use a 
small value of prediction horizon that reduces the 
computational complexity. 
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