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Abstract—Voice coil motor (VCM) is a special direct drive 

linear motor, which can convert electric energy directly into 
mechanical energy without the use of transmission mechanism. 
VCM has the advantages of simple structure, good rigidity, fast 
response, silence, high linearity, no cogging force, no pulsation et 
al. It is widely used in the field of high-precision control. This 
paper reviews and summarizes the results of VCM research 
conducted by scholars from various countries, and summarizes 
the general situation of VCM servo control technology. Firstly, a 
basic description of VCM's mathematical model and common 
control mechanisms is provided. The benefits, drawbacks, and 
application of control techniques in the field of VCM are all 
explored in detail; At the same time, the methods to improve 
control strategy are proposed; Then, combined with the analysis 
and research of scholars in various countries on VCM, the 
problems of difficult to establish accurate model, friction 
disturbance and mechanical vibration of VCM and the solutions 
to the corresponding problems are summarized; Finally, a 
summary of VCM's application fields is provided.  
 

Index Terms—Control strategy, Position loop, Position servo 
control, Voice coil motor.  
 

I. INTRODUCTION 

OICE coil motor is a special form of direct drive motor, 
which is named because of its principle. The principle is 

similar to that of loudspeaker vibrating diaphragm [1] by 
exciting voice coil of controlled current. Its working principle 
is that the energized coil (conductor) will generate force in the 
magnetic field, and the force is proportional to the current 
applied to the coil. Straight lines or arcs make up the majority 
of its motion forms. 

As a kind of special linear motor, VCM adopts coreless 
structure and removes the transmission mechanism. Therefore, 
the compactness of the motor system is improved, and the 
structure is simpler. In addition, the VCM also has the advant- 
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ages of good rigidity, fast response speed, silence, high 
linearity, no cogging force, no pulsation et al [2], and can 
realize small-scale, high-frequency and high-precision 
reciprocating control. Therefore, it is widely used in many 
occasions where high-precision servo is required. 

The elimination of the transmission mechanism makes the 
structure of the VCM simpler and more efficient, but it also 
makes the VCM more sensitive to external disturbances and 
load changes. In addition, VCM also faces problems such as 
difficulty in establishing accurate models, low thrust density 
[3], and mechanical resonance, all of which pose challenges to 
high-precision servo control.  

This paper summarizes the research results of servo control 
technology of VCM. Section Ⅱ briefly describes the 
mathematical model, common control strategies, advantages 
and disadvantages of VCM. Section Ⅲ introduces the methods 
of improving the controller by means of feedforward, 
macro-micro control structure and observer. Section Ⅳ 
summarizes the difficulty of establishing accurate models of 
VCM, problems such as friction disturbance and mechanical 
vibration, and solutions to corresponding problems. Section Ⅴ 
summarizes the application fields of VCM. 

II. POSITION LOOP CONTROL STRATEGY 

As a new type of direct drive linear motor, the design of 
VCM is based on Ampere force principle. According to 
different structures, the models of VCM can be divided into 
two categories: one is mass-spring-damper (MSD) and the 
other is mass-damper (MD). The mechanical balance equation 
and voltage balance equation of VCM can be obtained through 
the mechanical model and circuit model of VCM: 
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Where km is Thrust coefficient of VCM, m is the mass of the 
mover, x is Displacement, kf is Coefficient of friction, kx is the 
spring resistance, R and L is total coil resistance and 
inductance, and ke is Back-EMF coefficient. 

The process of establishing the mathematical model of the 
VCM is explained in detail in [4]. 

Because the volume of the VCM is typically tiny, in order 
to obtain the effect of fast tracking, the servo control system 
for the VCM often adopts a dual closed loop structure of 
position and current. The design of the position loop is the 
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most important link to the design of the VCM control structure. 
The common controllers of the VCM position loop will be 
briefly summarized here. 

A. PID Control 

The PID algorithm is widely used in industrial control 
because of its simple structure, convenient adjustment, reliable 
work and good stability. It is also widely used in the field of 
VCM control. The PID controller structure of the VCM is 
shown in Fig. 1. 

 
Fig. 1.  PID controller block diagram. 

According to some differences in the PID structure, PID 
controllers can be divided into series PID, parallel PID and 
standard PID. In engineering, parallel PID and standard PID 
are more widely used. The system structure, model 
characteristics, parameter characteristics and debugging 
methods of the PID controller are detailed in [5]. 

With the improvement in system performance requirements, 
simple PID control often cannot meet the requirements. 
Combining PID control with other modern control ideas has 
formed many valuable control strategies. Combining 
traditional PID control with fuzzy control [6],[7], neural 
network control [8], and adaptive control [9] can improve the 
adaptive ability and anti-interference ability of the VCM servo 
system when facing interference; In [10]-[12] authors 
proposed the introduction of predictive compensation in PID 
control, by analyzing the error at the current moment to 
change the input at the next moment, thereby improving the 
positioning accuracy of the VCM; in addition, the use of a 
two-degree-of-freedom PID controller structure can improve 
the system The following performance and anti-interference 
performance [13]. 

B. ADRC Control 

Active Disturbance Rejection Control (ADRC) evolved 
from PID control and adopted the core concept of PID error 
feedback control. The proposal of ADRC controller solves the 
weak links in PID control, such as the error computation; 
noise degradation; oversimplification and the loss of 
performance in the control law in the form of a linear 
weighted sum; complications brought by the integral control 
[14]. 

The structure diagram of ADRC controller is shown as in 
Fig. 2. The ADRC controller turns the control object into an 

 
Fig. 2.  ADRC controller block diagram. 

ordinary integral series control object. The purpose of 
designing the extended state observer (ESO) is to observe the 
extended state variables, which are used to estimate the 
unknown disturbance and the unmodeled part of the control 
object, and to realize the feedback linearization of the dynamic 
system. And ADRC use the control law that can be equivalent 
to the PD structure to compensate the errors of each order, 
allowing for tracking control of the controlled object. The 
ADRC controller coefficient is independent of the object's 
mathematical model. 

Since the control object is equivalent to the integral series 
link in the ADRC controller design process, the controller 
coefficients often do not depend on the mathematical model of 
the object. The ADRC controller is used in the VCM to solve 
the problem of uncertainty in the theoretical model of the 
system [15]; ADRC parameter tuning is more convenient. 
Compared with the traditional PID controller, especially when 
facing the step response, the ADRC controller has smaller 
overshoot and faster response time [16],[17]; Finally, for 
real-time interference estimation and compensation can make 
the system more robust [18],[19]. 

C. Fuzzy Control 

In the traditional control field, the accuracy of the dynamic 
mode of the control system is the most important key that 
affects the quality of the control. The more detail the dynamic 
information of the system, the more precise the control can be 
achieved. However, because the accuracy requirements for 
VCM are generally high, the established model cannot meet 
the requirements of high-precision control, which brings 
challenges to high-precision control. 

Therefore, it is a good attempt to deal with these control 
problems with fuzzy mathematics. The structure of the fuzzy 
controller is shown in Fig. 3. 

 
Fig. 3.  Fuzzy controller block diagram.  

The fuzzy controller fuzzifies the position error, performs 
fuzzy inference according to the fuzzy rules, and finally 
defuzzifies the fuzzy value after inference to obtain clear 
control parameters. 

In the early research on fuzzy control, it is necessary to 
construct fuzzy rules first to achieve design performance 
through trial and error; however, this adjustment process of 
trial and error is undoubtedly very tedious and time- 
consuming. Therefore, how to reasonably design self-learning 
or adaptive rules to adjust fuzzy rules online is a research 
point in the application of fuzzy control in VCM [20],[21]. 
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Because fuzzy control is not sensitive to system parameters 
and environmental parameters, its response to nonlinear 
control objects is better robust than PID control [22], and 
model-free control can be implemented to solve the problem 
of parameter uncertainty and nonlinearity in VCM [23]-[26]. 

D. Internal Model control and Predictive Control 

The internal model control structure is shown in the Fig. 4. 
The design of the internal model controller uses the principle 
of internal model, that is, when the internal model is the same 
as the actual model, it can realize the error-free tracking of the 
controlled object. However, this structure is limited by the 
accuracy of the VCM model, so it is of low practical value in 
engineering and is mainly used for the design of current loops. 
In [27], authors propose connecting an internal model 
controller with a stabilizer with a robust structure in parallel to 
achieve high-precision tracking under a certain range of 
frequency changes. It is effective to use internal model control 
to estimate and eliminate periodic interference in [28]. 

The predictive control is derived from the internal model 
control structure, as shown in the Fig. 5. It is an optimal 
control algorithm, which uses the feedback of the current time 
to determine the future control action by optimizing a 
performance index. 

 
Fig. 4.  Internal model controller block diagram. 

 

 
Fig. 5.  Predictive controller block diagram 

Predictive control is significant in improving the dynamic 
performance and stability of the system, but it also consumes 
more computational power, and is weak in nonlinear and 
uncertain problems. In [29]-[32], the model predictive control 
of the position error signal of VCM is carried out, which 
proves that it can reduce the stability time and improve 
tracking performance in the positioning process of the system; 
In [33], authors proposes to convert the noise suppression 
problem into a tracking problem, using model predictive 
control and generalized prediction Control can suppress the 
vibration of the ball bearing system rotor. 

E. Modern Control Strategy 

Taking into account the structure and parameter changes of 
the VCM servo system, various nonlinear effects, changes in 
the operating environment, and environmental disturbances 
and other time-varying and uncertain factors. Other modern 

control strategies such as adaptive control, neural network 
control, and robust control, Sliding mode variable structure 
control has been applied in VCM. 

1) Adaptive Control 

Adaptive control is a combination of feedback control and 
identification theory. It completes the overall adjustment of 
the controlled object by seeking the best performance 
indicators. At present, there are two types of self-tuning and 
model-reference adaptive control [35]. By designing the 
adaptive parameter adjustment law, the error signal tends to 
zero while ensuring the stability of the system [36]. The 
advantage of adaptive control is that it is effective and easy to 
implement when dealing with parameter changes and internal 
and external disturbances [37]-[39]. However, it will be 
limited by the measurement accuracy. In the field of VCM, 
adaptive control is usually used to deal with uncertain 
problems such as friction and vibration. 

2) Neural Network Control 

Neural network control uses reward or penalty mechanisms 
to accurately model certain parameters that are difficult to 
obtain with conventional tools, or act as a controller and 
optimize calculations. Neural network control has strong 
robustness, learning ability and adaptive ability. However, the 
optimization process of the neural network takes time, and it is 
difficult to meet the real-time performance of the position 
servo with the neural network as the controller. Therefore, the 
neural network control is often used to approximate certain 
parameters in the application of the VCM servo system 
[8],[39]-[40] , Or cooperate with adaptive control or fuzzy 
control to optimize adaptive control law [42]-[43] or fuzzy 
rules [24],[25]. 

3) Robust Control 

Robust control configures the controller through the state 
space method, so that the control system maintains certain 
performance under a certain (structure, size) parameter 
perturbation.  

Robust control has stronger anti-interference ability and 
stability. However, because the robust control system 
generally does not work in the optimal state, the steady-state 
accuracy of the system is poor. Therefore, robust control is 
especially suitable for those systems with large variation range 
of uncertain factors and small stability margin[44]-[46]. In 
[47], H∞ robust control is used to solve the problem of 
assembly errors in the center of mass and force of VCM; In 
[48], robust control is used to reduce the impact of load 
resonance changes; some scholars also propose to use robust 
control to solve the problem uncertain external disturbance 
[49]-[51] and the problem of uncertain system model [52], 
thereby improving the stability and tracking effect of the 
system. 

4) Sliding Mode Variable Structure Control 

Sliding mode variable structure control (SMVSC) is 
essentially a special kind of nonlinear control, and nonlinearity 
manifests itself as control discontinuity. The difference 
between this control strategy and other controls is that the 
“structure” of the system is not fixed, but it can change 
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purposefully and continuously according to the current state of 
the system in a dynamic process, forcing the system to follow 
a predetermined “Sliding surface” State trajectory movement.                                                                                                                                                                          

Sliding mode variable structure control not only has good 
control effect on nonlinear system, but also has the advantages 
of simple algorithm and fast response speed. Due to the 
characteristics of the sliding film control structure[53], the 
determination of sliding surface and the elimination of 
buffeting [54],[55] are the difficulties of research. In VCM 
control, sliding mode control is used to compensate for 
non-linear, time-varying, hysteresis characteristics such as 
friction [56],[57] or to improve robustness in the face of 
parameter changes or external disturbances [58].  

5) Optimal Control 

The settling time is an important parameter in the VCM 
control system. In order to realize the rapid positioning 
problem, people usually consider time-optimal control (TOC), 
that is, the system can move with maximum acceleration and 
deceleration (that is, bang-bang control). In [59], this method 
is used, by planning the acceleration and deceleration action 
time, the energy optimal solution for a fixed time is realized. 

Despite its excellent dynamic performance, TOC has poor 
robustness. When there are differences in models or 
disturbances in the system, the control performance of the 
system will deteriorate. Proximate time-optimal control 
(PTOC) introduces a linear working area based on TOC 
control law. When the error is small, the linear control law is 
used instead of the switching function, which makes the 
system more robust. In the field of VCM, optimal control 
greatly improves the dynamic performance of the system. In 
[60],[61], the PTOC method is used to realize the tracking and 
resetting process of HDD, and the stabilization time and 
overshoot are better than PID controller. In [62]-[64], a 
reference trajectory compensation method is proposed to 
shorten the action time and improve the residual vibration. 

III. POSITION LOOP IMPROVEMENT STRATEGY 

The above introduces more common controllers for VCM 
position loops, and by carefully selecting and cooperating with 
the controllers, VCM control performance can be enhanced. 
However, the simple feedback strategy still has its limitations, 
which limits the further improvement of VCM performance. 
Therefore, many scholars have proposed a series of methods 
to improve the control strategy. Several common methods are 
introduced below.  

A. Feedforward Compensation 

The VCM may be subject to external disturbances such as 
airflow damping, friction damping, internal mechanical 
vibration, dead zone, hysteresis, and various nonlinear 
characteristics in the system. Such problems are difficult to 
handle with conventional controllers, posing a challenge for 
VCM's high-precision servo control. The feedforward control 
is an effective method to solve the internal or external 
disturbance of the VCM. 

At present, most studies on external disturbances such as 
friction in VCM use feedforward to compensate [50],[65]; in 

[66], multi-rate adaptive feedforward was used to suppress 
Nyquist frequency and higher frequency interference; In [67], 
authors using feedforward to compensate the hysteresis 
characteristics of VCM; A control strategy combining 
feedforward and feedback is proposed in [68]. The 
feedforward controller adopts an iterative control algorithm 
based on zero-phase filter, which effectively improves the 
system's following accuracy and response speed. 

B. Macro-micro Control Structure 

Due to the simple structure and light weight of VCM, it can 
easily reach a positioning accuracy of 10um. However, it is 
difficult to further improve its accuracy, and it often requires 
the cooperation of appropriate control strategies. The 
piezoelectric actuator (PZT) has the advantages of high 
control accuracy, high response frequency, high electrical and 
mechanical energy conversion efficiency, and can achieve a 
positioning accuracy of 1-10nm. But the stroke of PZT is only 
tens of microns [2]. 

 
Fig. 6.  Macro-micro control structure block diagram. 

In order to overcome the shortcomings of PZT short stroke, 
an effective method is to combine VCM and PZT to form a 
macro and micro control structure, as shown in Fig. 6. Where 
ξ represents the boundary point between the macro controller 
and the microcontroller. When the position error e > ξ um, the 
macro controller will act; when the position error e ≤ ξ um, the 
microcontroller will act. 

This kind of control structure with VCM as macro 
controller and PZT as micro controller was first applied to the 
positioning mechanism of hard disk read/write, and it is also 
the most widely used in this field [69]-[72]. In [42], a 
macro-micro control structure composed of a permanent 
magnet linear motor (PMLM) and a VCM is also proposed, 
which can achieve a positioning accuracy of 0.1um in a larger 
stroke range.  

C. Observer 

The observer can be used to supplement or replace the 
sensor in the control system, and can be used to calculate the 
state or parameter that the sensor is difficult to measure. 
Observers in VCM can be roughly divided into 
parameter-oriented observers and disturbance observers (DOB) 
according to their purposes. 

1) Observer Recognizes The Motor Parameters 

VCM contain a large number of time-varying and 
non-linear parameters, which are difficult to measure using 
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traditional methods. Many scholars use observers to calculate 
these parameters. This part of the content will be explained in 
more detail in Section Ⅳ, the introduction of VCM parameter 
identification and friction parameter identification. 

2) Observer Reduces Disturbance 

The basic idea of the disturbance observer is to equate the 
difference between the actual model and the ideal model 
output caused by external disturbance and model parameter 
changes as control input, that is, to observe the equivalent 
disturbance. And equal compensation is introduced in the 
control to realize the interference Completely inhibited 
[73],[74]. The basic structure diagram of the disturbance 
observer is shown in the Fig. 7 (a). In practice, the order of 
GP(s) is not 0, and the inverse cannot be realized. At the same 
time, considering the influence of the measurement noise ξ, 
the principle block diagram of the disturbance observer is 
shown in the Fig. 7 (b). 

 
(a)  (b)  

Fig. 7.  (a) DOB theoretical structure (b) DOB basic structure. 

In VCM, a disturbance observer can be used to estimate and 
compensate the errors caused by uncertain disturbances and 
nonlinear parameters [75],[76]; A friction compensation 
method based on GMS model and DOB is proposed in [77]. 
DOB compensates the residual friction outside the friction 
model. 

IV. MAIN RESEARCH DIFFICULTIES 

A. Difficulty of Establishing Accurate Model 

For the controlled object, accurate modeling and 
identification are crucial. The more accurate the model, the 
easier the feedback controller design. On the other hand, 
analyzing the complex characteristics of multiple nonlinear 
factors helps to improve the positioning accuracy of motion 
control systems, especially in nano-level positioning control 
systems. 

In [78], the accurate mathematical model of VCM is 
established through time domain and frequency domain 
analysis, and the friction and nonlinear factors are 
compensated; A neural network is used to identify the 
nonlinearity in the VCM online Parameters in [8],[40]; In [79], 
a fuzzy observer with simple self-learning ability is used to 
approximate the unknown nonlinearity of the VCM system 
dynamics online; For the change of VCM resistance, It is also 
suggested that using the least mean square error algorithm or 
RROs characteristics is a method to estimate the VCM 
resistance in [80]. 

In [23]-[26], an adaptive dynamic sliding mode fuzzy 
CMAC (ADSFC) system with cerebellum is proposed to 
realize model free control of network or compensation 
controller; In [81], an adaptive structure based on dynamic 

surface control is proposed to deal with the uncertainty of 
VCM motor parameters. 

B. Friction Disturbance 

Friction damping is one of the main disturbances of VCM. 
Because friction is a very complex nonlinear process, it also 
includes such characteristics as friction lag under changing 
speed, disengagement force, nonlocal memory characteristics 
and so on. It brings challenges to friction compensation, 
especially when the speed crosses zero. The traditional 
model-based friction compensation is mainly divided into 
three steps. 

1) Friction Disturbance 

At present, researches on friction model are mainly divided 
into two categories: static model and dynamic model. The 
static model is shown in Fig. 8, which is a combination of 
Coulomb friction, viscous friction, and Strebeck effect. The 
dynamic model includes dahl model, Bliman-Sorine model, 
lugre model [82], leuven model [83], Maxwell-slide (GMS) 
model [84] et al. 
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Fig. 8.  Static friction model. 

2) Identification of Friction Parameters 
For the static friction parameter identification method, the 

applied speed can be given, and the friction model can be 
obtained through the time domain or frequency domain 
response of the system[85]-[87]. The parameter identification 
methods of LuGre model and GMS model are introduced in 
more detail in [88]. In addition, a method of simulating pivot 
friction using Prandtl operator is proposed in [89]. 

At present, the most commonly used model-based friction 
compensation is feed-forward compensation. The structure 
diagram is shown in Fig. 9. Feed-forward compensation can 
usually be divided into the following two types: one is the 
compensation at the system control signal, and the other is 
superimposing the motor output a signal on the force, both of 
which can reduce the influence of friction. When making 
compensation, some scholars use the desired speed as input, 
and some scholars use the actual speed of feedback as input. 
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3) Compensation of Friction 

 
Fig. 9.  Structural diagram of friction feedforward compensation. 

The above introduction is the friction correction of the fixed 
model. This method relies on the accuracy of the friction 
model. During the compensation process, it will be affected by 
the uneven friction parameters or the changes of the friction 
parameters of the environment, which will affect the 
compensation results. An effective method is to use the 
observer to identify and compensate online, as shown in Fig. 
10. For example, in reference [90]-[92], adaptive control is 
used to adjust some parameters in the friction model. And a 
method using sinusoidal tracking controller to estimate 
Coulomb friction, viscous friction, static friction and strebeck 
effect in VCM is proposed in [93]; In addition, a method of 
using a disturbance observer outside the model to compensate 
the residual friction is also proposed in [77]. 

 
Fig.10.  Structure diagram of friction compensation based on observer. 

C. Mechanical Resonance 

VCM are often disturbed by friction damping and airflow 
damping when they are in motion. At the same time, assembly 
errors may occur due to process limitations during assembly, 
that is, spindle eccentricity or deviation of center of mass and 
force. All of these may cause the VCM to produce mechanical 
resonance, which seriously affects the positioning accuracy 
and steady-state performance of the VCM. 

Since the vibration frequency of mechanical resonance is 
relatively fixed and generally higher than the servo bandwidth 
of the controller, a multi-rate notch filter with band stop 
function is a simple and effective solution to rescue 
mechanical resonance [94]. However, notch filters usually 
result in a decrease in phase margin and robustness. In 
addition, proper positive speed and positive position feedback 

can effectively eliminate the first-order and second-order 
system vibrations [95]. Some scholars measure the vibration 
of the actuator according to this idea and inject reaction 
commands to design vibration suppression controllers. For 
example, in [96], [97], the vibration model is obtained through 
vibration sensor and modal test respectively, and the vibration 
is eliminated through positive feedback, the structure is shown 
in Fig.7(a). In [98], piezoelectric sensors are used to detect 
vibration, and an active vibration suppression (AVR) method 
to eliminate vibration is proposed. The structure is shown in 
Figure 11 (b). In addition, in [99], [100], it is recommended to 
design a feedforward compensator to compensate for vibration. 
In order to reduce the influence of uncertain vibration, robust 
control is also an effective method. 

 
(a)  (b) 

Fig. 11. Structural diagram of vibration compensation controller. (a) Vibration 
compensation block diagram in [96],[97]. (b) Actuator with AVR in [98]. 

V. APPLICATION OF VCM POSITION SERVO SYSTEM 

A. Camera Focus 

In smart phone camera modules, VCM have advantages 
over stepper motors and piezoelectric materials. Most cameras 
use VCM, which control the current of the VCM to achieve 
the autofocus function of the phone lens. In [9,101,102], Hall 
sensors are used to detect the position of the mover to achieve 
closed-loop control of the lens position. Due to the 
characteristics of mobile phone camera application scenarios, 
how to improve the robustness of the VCM in the face of 
external interference is the main research difficulty of the 
position servo system in this field. An adaptive fuzzy PID 
control algorithm is proposed in [9], which compensates for 
the disturbance changes of movable parts, load and gravity 
changes; In [101], a digital lag lead compensator is used to 
compensate for vibration and maintain the stability of the 
camera image. 

B. Hard Disk Drive 

The VCM was first used in the hard disk read/write head 
positioning system, and it is also the most widely used in this 
field. At present, the hard disk drive usually uses a 
macro-micro control system composed of a VCM and a PZT 
[103]-[105]. The specific control structure is described in 
Section Ⅲ. There are many researches on hard disk drives. 
The main research areas are the suppression and elimination of 
friction and vibration, the improvement of servo bandwidth 
[106]-[108], and the design of multi-level controller loops 
[109]. 

C. Multi-axis Precision Motion Stage  

X-Y precision motion stage is the core component of 
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semiconductor device manufacturing and packaging 
equipment such as photoetching machine, wire bonding 
machine, PCB drilling and so on. Two VCM respectively 
controls the positioning of the x and y axes. Based on this idea, 
many multi-axis motion stages are also designed. 

The workbench has extremely high requirements for the 
speed and accuracy of driving equipment. VCM has the 
advantages of fast response speed, high accuracy and good 
Nano positioning linearity[110]. It is widely used in ultra 
precision positioning systems such as semiconductor 
manufacturing equipment, high-grade CNC machine tools and 
optical electron microscopy [111]. 

In research on the XY working platform, positioning 
accuracy and tracking performance are the primary goals of 
the research. In [42], it was proposed to achieve high-precision 
positioning through a macro-micro control structure composed 
of a permanent magnet linear motor and a VCM; The 
fractional order fuzzy PID control structure is adopted in [7], 
which proves that the controller has good robustness and good 
tracking performance for high-precision contour; Problem of 
quadrant burr when the speed crosses zero is solved in [77]. 

VI. CONCLUSION 

This article summarizes VCM servo control technology 
based on the position servo system of VCM by researchers 
from various nations. This article gives a comprehensive 
introduction to the principles, characteristics and application 
scenarios of some common position controller structures. The 
methods for improving the position loop servo based on 
feedforward control, macro-micro control structure, observer 
are summarized. At the same time, it introduces the main 
research difficulties in the process of VCM research, such as 
the difficulty of establishing accurate models, friction 
disturbance, and mechanical resonance, and analyzes and 
discusses the research of related scholars in these fields. 
Finally, this article introduces common application areas of 
VCM and summarizes the main problems that need to be 
solved in each application scenario.  

The future development trend of VCM servo system may 
continue focus on improving positioning accuracy and time, as 
well as improving anti-interference ability. It is reasonable to 
expect that as research progresses, the performance of the 
VCM servo system will increase. 
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